Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(4): 668-679, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38508194

RESUMO

Populations of the Eastern Highlands of Papua New Guinea (EHPNG, area 11,157 km2) lived in relative isolation from the rest of the world until the mid-20th century, and the region contains a wealth of linguistic and cultural diversity. Notably, several populations of EHPNG were devastated by an epidemic prion disease, kuru, which at its peak in the mid-twentieth century led to some villages being almost depleted of adult women. Until now, population genetic analyses to learn about genetic diversity, migration, admixture, and the impact of the kuru epidemic have been restricted to a small number of variants or samples. Here, we present a population genetic analysis of the region based on genome-wide genotype data of 943 individuals from 21 linguistic groups and 68 villages in EHPNG, including 34 villages in the South Fore linguistic group, the group most affected by kuru. We find a striking degree of genetic population structure in the relatively small region (average FST between linguistic groups 0.024). The genetic population structure correlates well with linguistic grouping, with some noticeable exceptions that reflect the clan system of community organization that has historically existed in EHPNG. We also detect the presence of migrant individuals within the EHPNG region and observe a significant excess of females among migrants compared to among non-migrants in areas of high kuru exposure (p = 0.0145, chi-squared test). This likely reflects the continued practice of patrilocality despite documented fears and strains placed on communities as a result of kuru and its associated skew in female incidence.


Assuntos
Kuru , Príons , Adulto , Feminino , Humanos , Kuru/epidemiologia , Kuru/genética , Kuru/história , Papua Nova Guiné/epidemiologia , Príons/genética , Genótipo , Aprendizagem
2.
Trends Genet ; 40(1): 52-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000919

RESUMO

First identified in isogenic mice, metastable epialleles (MEs) are loci where the extent of DNA methylation (DNAm) is variable between individuals but correlates across tissues derived from different germ layers within a given individual. This property, termed systemic interindividual variation (SIV), is attributed to stochastic methylation establishment before germ layer differentiation. Evidence suggests that some putative human MEs are sensitive to environmental exposures in early development. In this review we introduce key concepts pertaining to human MEs, describe methods used to identify MEs in humans, and review their genomic features. We also highlight studies linking DNAm at putative human MEs to early environmental exposures and postnatal (including disease) phenotypes.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Animais , Camundongos , Metilação de DNA/genética , Fenótipo , Genômica , Alelos
3.
Annu Rev Genomics Hum Genet ; 24: 305-332, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37220313

RESUMO

Genetic data contain a record of our evolutionary history. The availability of large-scale datasets of human populations from various geographic areas and timescales, coupled with advances in the computational methods to analyze these data, has transformed our ability to use genetic data to learn about our evolutionary past. Here, we review some of the widely used statistical methods to explore and characterize population relationships and history using genomic data. We describe the intuition behind commonly used approaches, their interpretation, and important limitations. For illustration, we apply some of these techniques to genome-wide autosomal data from 929 individuals representing 53 worldwide populations that are part of the Human Genome Diversity Project. Finally, we discuss the new frontiers in genomic methods to learn about population history. In sum, this review highlights the power (and limitations) of DNA to infer features of human evolutionary history, complementing the knowledge gleaned from other disciplines, such as archaeology, anthropology, and linguistics.


Assuntos
Arqueologia , Genômica , Humanos , Projeto Genoma Humano , Antropologia , Evolução Biológica
4.
Sci Adv ; 9(13): eabq2616, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989356

RESUMO

Previous studies have highlighted how African genomes have been shaped by a complex series of historical events. Despite this, genome-wide data have only been obtained from a small proportion of present-day ethnolinguistic groups. By analyzing new autosomal genetic variation data of 1333 individuals from over 150 ethnic groups from Cameroon, Republic of the Congo, Ghana, Nigeria, and Sudan, we demonstrate a previously underappreciated fine-scale level of genetic structure within these countries, for example, correlating with historical polities in western Cameroon. By comparing genetic variation patterns among populations, we infer that many northern Cameroonian and Sudanese groups share genetic links with multiple geographically disparate populations, likely resulting from long-distance migrations. In Ghana and Nigeria, we infer signatures of intermixing dated to over 2000 years ago, corresponding to reports of environmental transformations possibly related to climate change. We also infer recent intermixing signals in multiple African populations, including Congolese, that likely relate to the expansions of Bantu language-speaking peoples.


Assuntos
Cromossomos , Etnicidade , Humanos , Etnicidade/genética , Nigéria , Gana , Idioma , Variação Genética , Genética Populacional
5.
Heredity (Edinb) ; 130(3): 154-162, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36725960

RESUMO

Chickens are believed to have inhabited the Hawaiian island of Kauai since the first human migrations around 1200AD, but numbers have peaked since the tropical storms Iniki and Iwa in the 1980s and 1990s that destroyed almost all the chicken coops on the island and released large numbers of domestic chickens into the wild. Previous studies have shown these now feral chickens are an admixed population between Red Junglefowl (RJF) and domestic chickens. Here, using genetic haplotypic data, we estimate the time of the admixture event between the feral population on the island and the RJF to 1981 (1976-1995), coinciding with the timings of storm Iwa and Iniki. Analysis of genetic structure reveals a greater similarity between individuals inhabiting the northern and western part of the island to RJF than individuals from the eastern part of the island. These results point to the possibility of introgression events between feral chickens and the wild chickens in areas surrounding the Koke'e State Park and the Alaka'i plateau, posited as two of the major RJF reservoirs in the island. Furthermore, we have inferred haplotype blocks from pooled data to determine the most plausible source of the feral population. We identify a clear contribution from RJF and layer chickens of the White Leghorn (WL) breed. This work provides independent confirmation of the traditional hypothesis surrounding the origin of the feral populations and draws attention to the possibility of introgression of domestic alleles into the wild reservoir.


Assuntos
Galinhas , Hibridização Genética , Animais , Humanos , Galinhas/genética , Havaí , Ilhas , Cruzamento
6.
Genome Res ; 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794007

RESUMO

We present fastGLOBETROTTER, an efficient new haplotype-based technique to identify, date, and describe admixture events using genome-wide autosomal data. With simulations, we show how fastGLOBETROTTER reduces computation time by an order of magnitude relative to the related technique GLOBETROTTER without suffering loss of accuracy. We apply fastGLOBETROTTER to a cohort of more than 6000 Europeans from 10 countries, revealing previously unreported admixture signals. In particular, we infer multiple periods of admixture related to East Asian or Siberian-like sources, starting >2000 yr ago, in people living in countries north of the Baltic Sea. In contrast, we infer admixture related to West Asian, North African, and/or Southern European sources in populations south of the Baltic Sea, including admixture dated to ∼300-700 CE, overlapping the fall of the Roman Empire, in people from Belgium, France, and parts of Germany. Our new approach scales to analyzing hundreds to thousands of individuals from a putatively admixed population and, hence, is applicable to emerging large-scale cohorts of genetically homogeneous populations.

7.
Nucleic Acids Res ; 50(12): 6735-6752, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35713545

RESUMO

We analysed DNA methylation data from 30 datasets comprising 3474 individuals, 19 tissues and 8 ethnicities at CpGs covered by the Illumina450K array. We identified 4143 hypervariable CpGs ('hvCpGs') with methylation in the top 5% most variable sites across multiple tissues and ethnicities. hvCpG methylation was influenced but not determined by genetic variation, and was not linked to probe reliability, epigenetic drift, age, sex or cell heterogeneity effects. hvCpG methylation tended to covary across tissues derived from different germ-layers and hvCpGs were enriched for proximity to ERV1 and ERVK retrovirus elements. hvCpGs were also enriched for loci previously associated with periconceptional environment, parent-of-origin-specific methylation, and distinctive methylation signatures in monozygotic twins. Together, these properties position hvCpGs as strong candidates for studying how stochastic and/or environmentally influenced DNA methylation states which are established in the early embryo and maintained stably thereafter can influence life-long health and disease.


Assuntos
Metilação de DNA , Embrião de Mamíferos , Humanos , Metilação de DNA/genética , Reprodutibilidade dos Testes , Embrião de Mamíferos/metabolismo , Ilhas de CpG , Etnicidade
8.
Mol Biol Evol ; 39(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35460423

RESUMO

Throughout human evolutionary history, large-scale migrations have led to intermixing (i.e., admixture) between previously separated human groups. Although classical and recent work have shown that studying admixture can yield novel historical insights, the extent to which this process contributed to adaptation remains underexplored. Here, we introduce a novel statistical model, specific to admixed populations, that identifies loci under selection while determining whether the selection likely occurred post-admixture or prior to admixture in one of the ancestral source populations. Through extensive simulations, we show that this method is able to detect selection, even in recently formed admixed populations, and to accurately differentiate between selection occurring in the ancestral or admixed population. We apply this method to genome-wide SNP data of ∼4,000 individuals in five admixed Latin American cohorts from Brazil, Chile, Colombia, Mexico, and Peru. Our approach replicates previous reports of selection in the human leukocyte antigen region that are consistent with selection post-admixture. We also report novel signals of selection in genomic regions spanning 47 genes, reinforcing many of these signals with an alternative, commonly used local-ancestry-inference approach. These signals include several genes involved in immunity, which may reflect responses to endemic pathogens of the Americas and to the challenge of infectious disease brought by European contact. In addition, some of the strongest signals inferred to be under selection in the Native American ancestral groups of modern Latin Americans overlap with genes implicated in energy metabolism phenotypes, plausibly reflecting adaptations to novel dietary sources available in the Americas.


Assuntos
Genética Populacional , Genoma Humano , Genômica/métodos , Hispânico ou Latino/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética
9.
11.
Hum Mol Genet ; 30(22): 2123-2134, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196708

RESUMO

American populations are one of the most interesting examples of recently admixed groups, where ancestral components from three major continental human groups (Africans, Eurasians and Native Americans) have admixed within the last 15 generations. Recently, several genetic surveys focusing on thousands of individuals shed light on the geography, chronology and relevance of these events. However, even though gene flow could drive adaptive evolution, it is unclear whether and how natural selection acted on the resulting genetic variation in the Americas. In this study, we analysed the patterns of local ancestry of genomic fragments in genome-wide data for ~ 6000 admixed individuals from 10 American countries. In doing so, we identified regions characterized by a divergent ancestry profile (DAP), in which a significant over or under ancestral representation is evident. Our results highlighted a series of genomic regions with DAPs associated with immune system response and relevant medical traits, with the longest DAP region encompassing the human leukocyte antigen locus. Furthermore, we found that DAP regions are enriched in genes linked to cancer-related traits and autoimmune diseases. Then, analysing the biological impact of these regions, we showed that natural selection could have acted preferentially towards variants located in coding and non-coding transcripts and characterized by a high deleteriousness score. Taken together, our analyses suggest that shared patterns of post admixture adaptation occurred at a continental scale in the Americas, affecting more often functional and impactful genomic variants.


Assuntos
Genética Populacional , Genoma Humano , Genômica , Grupos Raciais/genética , Seleção Genética , América , Simulação por Computador , Genômica/métodos , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
12.
Mol Biol Evol ; 38(9): 3497-3511, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34129037

RESUMO

Ancient genomes anchor genealogies in directly observed historical genetic variation and contextualize ancestral lineages with archaeological insights into their geography and cultural associations. However, the majority of ancient genomes are of lower coverage and cannot be directly built into genealogies. Here, we present a fast and scalable method, Colate, the first approach for inferring ancestral relationships through time between low-coverage genomes without requiring phasing or imputation. Our approach leverages sharing patterns of mutations dated using a genealogy to infer coalescence rates. For deeply sequenced ancient genomes, we additionally introduce an extension of the Relate algorithm for joint inference of genealogies incorporating such genomes. Application to 278 present-day and 430 ancient DNA samples of >0.5x mean coverage allows us to identify dynamic population structure and directional gene flow between early farmer and European hunter-gatherer groups. We further show that the previously reported, but still unexplained, increase in the TCC/TTC mutation rate, which is strongest in West Eurasia today, was already present at similar strength and widespread in the Late Glacial Period ~10k-15k years ago, but is not observed in samples >30k years old. It is strongest in Neolithic farmers, and highly correlated with recent coalescence rates between other genomes and a 10,000-year-old Anatolian hunter-gatherer. This suggests gene-flow among ancient peoples postdating the last glacial maximum as widespread and localizes the driver of this mutational signal in both time and geography in that region. Our approach should be widely applicable in future for addressing other evolutionary questions, and in other species.


Assuntos
DNA Antigo , Genoma , Fluxo Gênico , Genética Populacional , Geografia , História Antiga , Dinâmica Populacional
13.
Nat Commun ; 12(1): 3581, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117245

RESUMO

The rich linguistic, ethnic and cultural diversity of Ethiopia provides an unprecedented opportunity to understand the level to which cultural factors correlate with-and shape-genetic structure in human populations. Using primarily new genetic variation data covering 1,214 Ethiopians representing 68 different ethnic groups, together with information on individuals' birthplaces, linguistic/religious practices and 31 cultural practices, we disentangle the effects of geographic distance, elevation, and social factors on the genetic structure of Ethiopians today. We provide evidence of associations between social behaviours and genetic differences among present-day peoples. We show that genetic similarity is broadly associated with linguistic affiliation, but also identify pronounced genetic similarity among groups from disparate language classifications that may in part be attributable to recent intermixing. We also illustrate how groups reporting the same culture traits are more genetically similar on average and show evidence of recent intermixing, suggesting that shared cultural traits may promote admixture. In addition to providing insights into the genetic structure and history of Ethiopia, we identify the most important cultural and geographic predictors of genetic differentiation and provide a resource for designing sampling protocols for future genetic studies involving Ethiopians.


Assuntos
População Negra/genética , Etnicidade/genética , Genética Populacional , Diversidade Cultural , Etiópia , Feminino , Variação Genética , Haplótipos , Humanos , Idioma , Linguística , Masculino , Família Multigênica , Religião , Fatores Sociais
14.
Cell ; 184(7): 1706-1723.e24, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33761327

RESUMO

The recently enriched genomic history of Indigenous groups in the Americas is still meager concerning continental Central America. Here, we report ten pre-Hispanic (plus two early colonial) genomes and 84 genome-wide profiles from seven groups presently living in Panama. Our analyses reveal that pre-Hispanic demographic events contributed to the extensive genetic structure currently seen in the area, which is also characterized by a distinctive Isthmo-Colombian Indigenous component. This component drives these populations on a specific variability axis and derives from the local admixture of different ancestries of northern North American origin(s). Two of these ancestries were differentially associated to Pleistocene Indigenous groups that also moved into South America, leaving heterogenous genetic footprints. An additional Pleistocene ancestry was brought by a still unsampled population of the Isthmus (UPopI) that remained restricted to the Isthmian area, expanded locally during the early Holocene, and left genomic traces up to the present day.


Assuntos
Indígena Americano ou Nativo do Alasca/genética , Arqueologia , Genômica/métodos , Indígena Americano ou Nativo do Alasca/classificação , DNA Mitocondrial/genética , Variação Genética , Genoma Humano , Haplótipos , Humanos , Filogenia
15.
Curr Biol ; 31(10): 2214-2219.e4, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33711251

RESUMO

The Inuit ancestors of the Greenlandic people arrived in Greenland close to 1,000 years ago.1 Since then, Europeans from many different countries have been present in Greenland. Consequently, the present-day Greenlandic population has ∼25% of its genetic ancestry from Europe.2 In this study, we investigated to what extent different European countries have contributed to this genetic ancestry. We combined dense SNP chip data from 3,972 Greenlanders and 8,275 Europeans from 14 countries and inferred the ancestry contribution from each of these 14 countries using haplotype-based methods. Due to the rapid increase in population size in Greenland over the past ∼100 years, we hypothesized that earlier European interactions, such as pre-colonial Dutch whalers and early German and Danish-Norwegian missionaries, as well as the later Danish colonists and post-colonial immigrants, all contributed European genetic ancestry. However, we found that the European ancestry is almost entirely Danish and that a substantial fraction is from admixture that took place within the last few generations.


Assuntos
Genética Populacional , Inuíte/genética , População Branca , Dinamarca , Groenlândia , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único , População Branca/genética
16.
Hum Mol Genet ; 30(R1): R42-R48, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33547782

RESUMO

We review some of the current insights derived from the analyses of new large-scale, genome-wide autosomal variation data studies incorporating Ethiopians. Consistent with their substantial degree of cultural and linguistic diversity, genetic diversity among Ethiopians is higher than that seen across much larger geographic regions worldwide. This genetic variation is associated in part with ethnic identity, geography and linguistic classification. Numerous and varied admixture events have been inferred in Ethiopian groups, for example, involving sources related to present-day groups in West Eurasia and North Africa, with inferred dates spanning a few hundred to more than 4500 years ago. These disparate inferred ancestry patterns are correlated in part with groups' broad linguistic classifications, though with some notable exceptions. While deciphering these complex genetic signals remains challenging with available data, these studies and other projects focused on resolving competing hypotheses on the origins of specific ethnolinguistic groups demonstrate how genetic analyses can complement findings from anthropological and linguistic studies on Ethiopians.


Assuntos
População Negra/genética , Genética Populacional/métodos , África do Norte , Antropologia , Ásia , População Negra/etnologia , Etiópia/etnologia , Europa (Continente) , Variação Genética , Migração Humana , Humanos , Idioma
17.
Nature ; 577(7792): 665-670, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969706

RESUMO

Our knowledge of ancient human population structure in sub-Saharan Africa, particularly prior to the advent of food production, remains limited. Here we report genome-wide DNA data from four children-two of whom were buried approximately 8,000 years ago and two 3,000 years ago-from Shum Laka (Cameroon), one of the earliest known archaeological sites within the probable homeland of the Bantu language group1-11. One individual carried the deeply divergent Y chromosome haplogroup A00, which today is found almost exclusively in the same region12,13. However, the genome-wide ancestry profiles of all four individuals are most similar to those of present-day hunter-gatherers from western Central Africa, which implies that populations in western Cameroon today-as well as speakers of Bantu languages from across the continent-are not descended substantially from the population represented by these four people. We infer an Africa-wide phylogeny that features widespread admixture and three prominent radiations, including one that gave rise to at least four major lineages deep in the history of modern humans.


Assuntos
População Negra/genética , População Negra/história , Comportamento Alimentar/etnologia , Migração Humana/história , Filogenia , Alelos , Animais , Arqueologia , Sepultamento , Camarões , Criança , Pré-Escolar , Cromossomos Humanos Y/genética , DNA Antigo/análise , Feminino , Marcadores Genéticos/genética , Genética Populacional , Genoma Humano/genética , Haplótipos/genética , História Antiga , Humanos , Idioma/história , Masculino , Pan troglodytes/genética , Análise de Componente Principal
18.
Curr Biol ; 29(23): 3974-3986.e4, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735679

RESUMO

The human genetic diversity of the Americas has been affected by several events of gene flow that have continued since the colonial era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored. Here, we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected (1) the genetic structure, (2) the admixture profile, (3) the demographic history, and (4) sex-biased gene-flow dynamics of the Americas. We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East, and to specific regions of Africa.


Assuntos
Indígena Americano ou Nativo do Alasca/genética , População Negra/genética , Fluxo Gênico , Genoma Humano , População Branca/genética , Região do Caribe , América Central , Humanos , América do Norte , América do Sul
19.
Genome Biol ; 20(1): 105, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31155008

RESUMO

BACKGROUND: DNA methylation is thought to be an important determinant of human phenotypic variation, but its inherent cell type specificity has impeded progress on this question. At exceptional genomic regions, interindividual variation in DNA methylation occurs systemically. Like genetic variants, systemic interindividual epigenetic variants are stable, can influence phenotype, and can be assessed in any easily biopsiable DNA sample. We describe an unbiased screen for human genomic regions at which interindividual variation in DNA methylation is not tissue-specific. RESULTS: For each of 10 donors from the NIH Genotype-Tissue Expression (GTEx) program, CpG methylation is measured by deep whole-genome bisulfite sequencing of genomic DNA from tissues representing the three germ layer lineages: thyroid (endoderm), heart (mesoderm), and brain (ectoderm). We develop a computational algorithm to identify genomic regions at which interindividual variation in DNA methylation is consistent across all three lineages. This approach identifies 9926 correlated regions of systemic interindividual variation (CoRSIVs). These regions, comprising just 0.1% of the human genome, are inter-correlated over long genomic distances, associated with transposable elements and subtelomeric regions, conserved across diverse human ethnic groups, sensitive to periconceptional environment, and associated with genes implicated in a broad range of human disorders and phenotypes. CoRSIV methylation in one tissue can predict expression of associated genes in other tissues. CONCLUSIONS: In addition to charting a previously unexplored molecular level of human individuality, this atlas of human CoRSIVs provides a resource for future population-based investigations into how interindividual epigenetic variation modulates risk of disease.


Assuntos
Metilação de DNA , Epigênese Genética , Genoma Humano , Idoso , Encéfalo/metabolismo , Estudos de Casos e Controles , Criança , Doença/genética , Feminino , Gâmbia , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal , Estações do Ano , Glândula Tireoide/metabolismo
20.
Proc Biol Sci ; 286(1902): 20190471, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039721

RESUMO

North African history and populations have exerted a pivotal influence on surrounding geographical regions, although scant genetic studies have addressed this issue. Our aim is to understand human historical migrations in the coastal surroundings of North Africa. We built a refined genome-wide dataset of North African populations to unearth the fine-scale genetic structure of the region, using haplotype information. The results suggest that the gene-flow from North Africa into the European Mediterranean coast (Tuscany and the Iberian Peninsula) arrived mainly from the Mediterranean coast of North Africa. In Tuscany, this North African admixture date estimate suggests the movement of peoples during the fall of the Roman Empire around the fourth century. In the Iberian Peninsula, the North African component probably reflects the impact of the Arab expansion since the seventh century and the subsequent expansion of the Christian Kingdoms. By contrast, the North African component in the Canary Islands has a source genetically related to present-day people from the Atlantic North African coast. We also find sub-Saharan gene-flow from the Senegambia region in the Canary Islands. Specifically, we detect a complex signal of admixture involving Atlantic, Senegambian and European sources intermixing around the fifteenth century, soon after the Castilian conquest. Our results highlight the differential genetic influence of North Africa into the surrounding coast and show that specific historical events have not only had a socio-cultural impact but additionally modified the gene pool of the populations.


Assuntos
População Negra/genética , Fluxo Gênico , Migração Humana , População Branca/genética , África do Norte/etnologia , População Negra/história , Europa (Continente) , Genética Populacional , Estudo de Associação Genômica Ampla , Haplótipos , História Antiga , História Medieval , Humanos , Espanha , População Branca/história
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...